Due to chemicals naturally occurring in the soil below the earth's surface.

Due to chemicals naturally occurring in the soil below the earth's surface.

REFERENCES

ADDITIONAL CONSTITUENTS ANALYZED

UNITS MCC MCL RANGE AVG

Hardness (as CaCO3) ppm (as CaCO3) 40 - 140 140
Sodium ppm 500 500

CONSTITUENT

AL PHG SAMPLES 95% LEVEL COLLECTED DETECTED

Lead ppb 51 51 51 0.08
Copper ppm 0.5 0.5 0.5 0.08

WHOLESALE (SCNA) CONSTITUENT

UNITS MCC MCL RANGE AVG

Sodium ppm 90 - 110 100

TTHM (Total Trihalomethanes) ppb 100 100

Chlorine ppm 0.4 - 4.0 2.0

SECONDARY STANDARDS: Aesthetic Standards Established by California Department of Public Health.

UNITS MCC MCL

Chloride ppm 500 500

Color Units 15 15

Corrosivity LI 15

Iron ppb 300 300

Manganese ppb 50 50

Odor Units 15 15

Specific Conductance uS/cm 1000 1400

Sulfate ppm 100 100

Total Dissolved Solids (TDS) ppm 750 750

Turbidityatsu 5 5

ADDITIONAL CONSTITUENTS ANALYZED

UNITS MCC MCL RANGE AVG

Bicarbonate ppm 40 - 270 140

Calcium ppm 20 - 30 20

Hardness (as CaCO3) ppm 13 - 360 102

Magnesium ppm 1.4 - 36 12.2

Potassium ppm 1.7 - 8.5 7.8

Sodium ppm 12 - 31 27

Total Alkalinity ppm 33 - 220 115

TODAY'S HUMBOLDT HEALTH

Adverse Health Effects

Bicarbonate

Due to chemicals naturally occurring in the soil below the earth's surface.

Calcium

Due to chemicals naturally occurring in the soil below the earth's surface.

Hardness (as CaCO3)

Due to chemicals naturally occurring in the soil below the earth's surface.

Magnesium

Due to chemicals naturally occurring in the soil below the earth's surface.

Potassium

Due to chemicals naturally occurring in the soil below the earth's surface.

Sodium

Due to chemicals naturally occurring in the soil below the earth's surface.

Total Alkalinity

Due to chemicals naturally occurring in the soil below the earth's surface.

REFERENCES

ADDITIONAL CONSTITUENTS ANALYZED

UNITS MCC MCL RANGE AVG

Bicarbonate ppm 40 - 270 140

Calcium ppm 20 - 30 20

Hardness (as CaCO3) ppm 13 - 360 102

Magnesium ppm 1.4 - 36 12.2

Potassium ppm 1.7 - 8.5 7.8

Sodium ppm 12 - 31 27

Total Alkalinity ppm 33 - 220 115

TODAY'S HUMBOLDT HEALTH

Adverse Health Effects

Bicarbonate

Due to chemicals naturally occurring in the soil below the earth's surface.

Calcium

Due to chemicals naturally occurring in the soil below the earth's surface.

Hardness (as CaCO3)

Due to chemicals naturally occurring in the soil below the earth's surface.

Magnesium

Due to chemicals naturally occurring in the soil below the earth's surface.

Potassium

Due to chemicals naturally occurring in the soil below the earth's surface.

Sodium

Due to chemicals naturally occurring in the soil below the earth's surface.

Total Alkalinity

Due to chemicals naturally occurring in the soil below the earth's surface.

REFERENCES

ADDITIONAL CONSTITUENTS ANALYZED

UNITS MCC MCL RANGE AVG

Bicarbonate ppm 40 - 270 140

Calcium ppm 20 - 30 20

Hardness (as CaCO3) ppm 13 - 360 102

Magnesium ppm 1.4 - 36 12.2

Potassium ppm 1.7 - 8.5 7.8

Sodium ppm 12 - 31 27

Total Alkalinity ppm 33 - 220 115

TODAY'S HUMBOLDT HEALTH

Adverse Health Effects

Bicarbonate

Due to chemicals naturally occurring in the soil below the earth's surface.

Calcium

Due to chemicals naturally occurring in the soil below the earth's surface.

Hardness (as CaCO3)

Due to chemicals naturally occurring in the soil below the earth's surface.

Magnesium

Due to chemicals naturally occurring in the soil below the earth's surface.

Potassium

Due to chemicals naturally occurring in the soil below the earth's surface.

Sodium

Due to chemicals naturally occurring in the soil below the earth's surface.

Total Alkalinity

Due to chemicals naturally occurring in the soil below the earth's surface.

REFERENCES

ADDITIONAL CONSTITUENTS ANALYZED

UNITS MCC MCL RANGE AVG

Bicarbonate ppm 40 - 270 140

Calcium ppm 20 - 30 20

Hardness (as CaCO3) ppm 13 - 360 102

Magnesium ppm 1.4 - 36 12.2

Potassium ppm 1.7 - 8.5 7.8

Sodium ppm 12 - 31 27

Total Alkalinity ppm 33 - 220 115

TODAY'S HUMBOLDT HEALTH

Adverse Health Effects

Bicarbonate

Due to chemicals naturally occurring in the soil below the earth's surface.

Calcium

Due to chemicals naturally occurring in the soil below the earth's surface.

Hardness (as CaCO3)

Due to chemicals naturally occurring in the soil below the earth's surface.

Magnesium

Due to chemicals naturally occurring in the soil below the earth's surface.

Potassium

Due to chemicals naturally occurring in the soil below the earth's surface.

Sodium

Due to chemicals naturally occurring in the soil below the earth's surface.

Total Alkalinity

Due to chemicals naturally occurring in the soil below the earth's surface.

REFERENCES

ADDITIONAL CONSTITUENTS ANALYZED

UNITS MCC MCL RANGE AVG

Bicarbonate ppm 40 - 270 140

Calcium ppm 20 - 30 20

Hardness (as CaCO3) ppm 13 - 360 102

Magnesium ppm 1.4 - 36 12.2

Potassium ppm 1.7 - 8.5 7.8

Sodium ppm 12 - 31 27

Total Alkalinity ppm 33 - 220 115

TODAY'S HUMBOLDT HEALTH

Adverse Health Effects

Bicarbonate

Due to chemicals naturally occurring in the soil below the earth's surface.

Calcium

Due to chemicals naturally occurring in the soil below the earth's surface.

Hardness (as CaCO3)

Due to chemicals naturally occurring in the soil below the earth's surface.

Magnesium

Due to chemicals naturally occurring in the soil below the earth's surface.

Potassium

Due to chemicals naturally occurring in the soil below the earth's surface.

Sodium

Due to chemicals naturally occurring in the soil below the earth's surface.

Total Alkalinity

Due to chemicals naturally occurring in the soil below the earth's surface.
Elk Grove Water District Water Quality Report: 2011

Produced in compliance of California Department of Public Health regulations. This report contains important information about your drinking water. Translate it, or speak with someone who understands it.

Introducing Mark J. Madison

The Elk Grove Water District is pleased to welcome our new general manager, Mark J. Madison. Mark is an experienced utility manager who has worked in the water and wastewater industry for over 25 years. His leadership was demonstrated by many organizational improvements and the implementation of the Stockton Delta Water Supply project; the largest capital improvement project in Stockton’s history.

He has a Bachelor’s degree in Agricultural Engineering from Cal Poly, San Luis Obispo and is a California registered Civil Engineer. He enjoys golf, skiing, motocycling and more golf! Living near Galt, Mark and his family are locals to our community. His wife, Amy, works for the Future Farmers of America, and was previously a teacher at the River Oaks Elementary School. Taylor, his son, will start this fall in Mechanical Engineering at Sacramento State, and Corinne, his daughter, will also start this fall in Environmental Studies at UC Santa Barbara.

A Message from Mark

As the new general manager, I am honored to join a team of board members and staff who are dedicated to providing outstanding customer service. The Elk Grove Water District prides itself on providing reliable and safe drinking water, and an exceptional level of customer care. It is truly a privilege for me to serve you.

New Customer Service System Installed at EGWD

After months of planning and preparation, the Elk Grove Water District is completing the installation of a new customer services support system. TruePoint Solutions replaces an antiquated billing software system and enables EGWD’s customer service representatives to serve you better through enhanced functionality. Benefits of the new system include:

- Discover cards are now accepted for online, mailed and on phone payments. More convenience!
- Credit card payments can be authorized immediately. Saves time!
- Customers with multiple accounts can access those accounts online with a single login. Easier access!
- Landlords and tenants can each receive their own statement. Improved service!
- Customer service representatives can wait on more than one person at a time in our administrative office. Faster service!
- Account numbers no longer change when account features change. More accuracy!
- Customers with multiple accounts will be able to receive all bills on a single statement. Reduces postage costs!
- Improved employee productivity. More time to serve you!

Please call (916) 685-3556, or stop by our administrative office at 8257 Elk Grove Blvd. to ask any questions you have about your account or the new system.

The Sources of Your Water

Elk Grove Water District’s water comes from groundwater sources. The Sacramento Valley Groundwater Basin lies below us and there are several wells throughout our community that produce our drinking water. A treatment facility on Railroad Street ensures that the water meets all government standards.

The water for the area east of Waterman Blvd. is supplied by Sacramento Water Agency under a wholesale purchase agreement. Therefore, water quality data for Sacramento County is also listed in this report.

Water Quality Report

EGWD GROUNDWATER SOURCE

<table>
<thead>
<tr>
<th>CONSTITUENT</th>
<th>UNITS</th>
<th>MCL</th>
<th>PHG</th>
<th>RANGE</th>
<th>AVG</th>
<th>TYPICAL SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROBIOLOGICAL CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td># Tests</td>
<td><5% or 1</td>
<td>0</td>
<td><0 of 314 tests</td>
<td>0</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>RADIOACTIVE CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Alpha Activity</td>
<td>pCi/L</td>
<td>10</td>
<td>0.8</td>
<td>0.00</td>
<td>0.6</td>
<td>Decay of natural and man-made isotopes</td>
</tr>
<tr>
<td>Radon 222</td>
<td>pCi/L</td>
<td>mo</td>
<td>0.005</td>
<td>0 - 1.56</td>
<td>0.1</td>
<td>Emission from soil gas interactions</td>
</tr>
<tr>
<td>Radon 228</td>
<td>pCi/L</td>
<td>0.019</td>
<td>0.3</td>
<td>0 - 1.33</td>
<td>0.058</td>
<td>Emission from soil gas interactions</td>
</tr>
<tr>
<td>Uranium</td>
<td>pCi/L</td>
<td>20</td>
<td>0.43</td>
<td>0 - 1.0</td>
<td>0.5</td>
<td>Decay of natural and man-made isotopes</td>
</tr>
<tr>
<td>INORGANIC CHEMICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>ppb</td>
<td>10</td>
<td>0.006</td>
<td><2.0 - 10</td>
<td>0.09</td>
<td>Emission from natural deposits; runoff from orchards; glass and electronics production wastes</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>1</td>
<td>0 - 4.266</td>
<td>0.1278</td>
<td>Discharges from oil drilling wastes and from metal refining; ocean sediments; and paper production.</td>
<td></td>
</tr>
<tr>
<td>Nitrate(aq nitrite, NO3)</td>
<td>ppm</td>
<td>45</td>
<td>45</td>
<td><1.0 - 18</td>
<td>0.54</td>
<td>Runoff and leaching from fertilizer use; leaching from agricultural land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.</td>
</tr>
<tr>
<td>Perchlorate</td>
<td>ppm</td>
<td>6</td>
<td>6</td>
<td><2.0 - 0.002</td>
<td>0.0002</td>
<td>Persistent organic contaminants are materials used in composting. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before use. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water can be found at http://www.epa.gov/lead/ and in this report.</td>
</tr>
</tbody>
</table>